High-fat diet-caused weight problems impairs insulin signaling in lung area of allergen-challenged rodents: Improvement by resveratrol

  • 1.

    GINA: Global Technique for Bronchial asthma Management and Prevention. Obtainable in http://ginasthma.org/wordpress-content/uploads/2016/04/GINA-2016-primary-report_tracked.pdf, 26/01/2017 (2016).

  • 2.

    Hogan, S. P. et al. Eosinophils: biological qualities and role in health insurance and disease. Clin. Exp. Allergy. 38, 709–750 (2008).

  • 3.

    Barnes, P. J. et al. Exhaled nitric oxide supplement in lung illnesses: an extensive review. Chest. 138, 682–692 (2010).

  • 4.

    Feder, L. S. et al. Role of nitric oxide supplement on eosinophilic lung inflammation in allergic rodents. Am. J. Respir. Cell. Mol. Biol. 17, 436–442 (1997).

  • 5.

    Xiong, Y., Karupiah, G., Hogan, S. P., Promote, P. S. & Ramsay, A. J. Inhibition of allergic airway inflammation in rodents missing nitric oxide supplement synthase 2. J. Immunol. 162, 445–452 (1999).

  • 6.

    Shore, S. A. & Johnston, R. A. Weight problems and bronchial asthma. Pharmacol. Ther. 110, 83–102 (2006).

  • 7.

    Calixto, M. C. et al. Weight problems enhances eosinophilic inflammation inside a murine type of allergic bronchial asthma. Br. J. Pharmacol. 159, 617–625 (2010).

  • 8.

    Leiria, L. O. et al. Elevated airway reactivity and hyperinsulinemia in obese rodents are linked by ERK signaling in brain stem cholinergic neurons. Cell Repetition. 11, 934–943 (2015).

  • 9.

    Calixto, M. C. et al. Metformin attenuates the exacerbation from the allergic eosinophilic inflammation in high-fat-diet-caused weight problems in rodents. PLoS One 8(10), e76786 (2013).

  • 10.

    Shimabukuro, M., Ohneda, M., Lee, Y. & Unger, R. H. Role of nitric oxide supplement in weight problems-caused beta cell disease. J. Clin. Invest. 100, 290–295 (1997).

  • 11.

    Jankovic, A. et al. Individuals nitric oxide supplementOrsuperoxide ratio in adipose tissue: relevance in weight problems and diabetes management. Br. J. Pharmacol. https://doi.org/10.1111/bph.13498 (2016).

  • 12.

    Perreault, M. & Marette, A. Targeted disruption of inducible nitric oxide supplement synthase protects against weight problems-linked insulin resistance in muscle. Nat. Mediterranean. 7, 1138–1143 (2001).

  • 13.

    Cordes, C. M., Bennett, R. G., Siford, G. L. & Hamel, F. G. Nitric oxide supplement inhibits insulin-degrading enzyme activity and performance through S-nitrosylation. Biochem Pharmacol. 77, 1064–1073 (2009).

  • 14.

    Carvalho-Filho, M. A., Ueno, M., Carvalheira, J. B., Velloso, L. A. & Saad, M. J. Targeted disruption of iNOS prevents LPS-caused S-nitrosation of IRbeta/IRS-1 and Akt and insulin resistance in muscle of rodents. Am. J. Physiol. Endocrinol. Metab. 291, E476–482 (2006).

  • 15.

    Pilon, G. et al. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO caused tyrosine nitration of IRS-one in skeletal muscle. Plos One. 5, e15912 (2010).

  • 16.

    Lloyd, C. M. & Saglani, S. Eosinophils the main attraction: Locating the outcomes of weight problems and bronchial asthma. Nat. Mediterranean. 19, 976–977 (2013).

  • 17.

    Baur, J. A. et al. Resveratrol improves health insurance and survival of rodents on the high-calorie diet. Nature. 444, 337–342 (2006).

  • 18.

    Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 127, 1109–1122 (2006).

  • 19.

    Sun, C. et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell. Metab. 6, 307–319 (2007).

  • 20.

    Um, J. H. et al. AMP-activated protein kinase-deficient rodents are up against the metabolic results of resveratrol. Diabetes. 59, 554–563 (2010).

  • 21.

    Barger, J. L. et al. A minimal dose of nutritional resveratrol partly mimics caloric restriction and retards aging parameters in rodents. PLoS One. 3(6), e2264 (2008).

  • 22.

    Su, H. C., Hung, L. M. & Chen, J. K. Resveratrol, a dark wine antioxidant, offers an insulin-like effect in streptozotocin-caused diabetic rats. Am. J. Physiol. Endocrinol. Metab. 290, E1339–1346 (2006).

  • 23.

    Szkudelski, T. & Szkudelska, K. Anti-diabetic results of resveratrol. Ann. N. Y. Acad. Sci. 1215, 34–39 (2011).

  • 24.

    André, D. M. et al. Therapy with resveratrol attenuates weight problems-connected allergic airway inflammation in rodents. Int. Immunopharmacol. 38, 298–305 (2016).

  • 25.

    Cersosimo, E., Xu, X. & Musi, N. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways. Am. J. Physiol. Cell. Physiol. 302(4), C652–657 (2012).

  • 26.

    Saltiel, A. R. & Kahn, C. R. Insulin signaling and also the regulating glucose and fat metabolic process. Nature. 414, 799–806 (2001).

  • 27.

    Nie, Y., Ma, R. C., Chan, J. C., Xu, H. & Xu, G. Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes. FASEB J. 26, 2383–2393 (2012).

  • 28.

    Al-Shawwa, B. A., Al-Huniti, N. H., DeMattia, L. & Gershan, W. Bronchial asthma and insulin resistance in dangerously obese children and adolescents. J. Bronchial asthma. 44, 469–473 (2007).

  • 29.

    Thuesen, B. H., Husemoen, L. L., Hersoug, L. G., Pisinger, C. & Linneberg, A. Insulin resistance like a predictor of incident bronchial asthma-like signs and symptoms in grown-ups. Clin. Exp. Allergy. 39, 700–707 (2009).

  • 30.

    Arshi, M., Cardinal, J., Hill, R. J., Davies, P. S. & Wainwright, C. Bronchial asthma and insulin resistance in youngsters. Respirology. 15, 779–784 (2010).

  • 31.

    Ma, J., Xiao, L. & Knowles, S. B. Weight problems, insulin resistance and also the prevalence of atopy and bronchial asthma in US adults. Allergy. 65, 1455–1463 (2010).

  • 32.

    Julia, V., Macia, L. & Dombrowicz, D. The outcome of diet on bronchial asthma and allergic illnesses. Nat. Rev. Immunol. 15(5), 308–322 (2015).

  • 33.

    DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance may be the primary defect in diabetes type 2. Diabetes Care. 32, S157–163 (2009).

  • 34.

    Leto, D. & Saltiel, A. R. Regulating glucose transport by insulin: traffic charge of GLUT4. Nat. Rev. Mol. Cell. Biol. 13, 383–396 (2012).

  • 35.

    Karlsson, H. K. et al. Insulin-stimulated phosphorylation from the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes. 54, 1692–1697 (2005).

  • 36.

    Hay., N. Akt isoforms and glucose homeostasis- the leptin connection. Trends Endocrinol. Metab. 22, 66–73 (2011).

  • 37.

    da Costa, R. M. et al. TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high-fat diet-given rodents. Cardiovasc Diabetol. 15, 119 (2016).

  • 38.

    Molina, S. A. et al. Insulin signaling through the PI3-kinase/Akt path regulates airway glucose uptake and barrier function inside a CFTR-dependent manner. Am. J. Physiol. Lung Cell Mol. Physiol. 321, L688–L702 (2017).

  • 39.

    Greene, M. W., Morrice, N., Garofalo, R. S. & Roth, R. A Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta. Biochem. J. 15, 105–116 (2004).

  • 40.

    Gual, P., Le Marchand-Brustel, Y. & Tanti, J. F. Good and bad regulating insulin signaling through IRS-1 phosphorylation. Biochimie. 87, 99–109 (2005).

  • 41.

    Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White-colored, M. F. The c-Jun NH(2)- terminal kinase promotes insulin resistance during connection to insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem. 275, 9047–9054 (2000).

  • 42.

    Hirosumi, J. et al. A main role for JNK in weight problems and insulin resistance. Nature. 420, 333–336 (2002).

  • 43.

    Liang, H. et al. Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-alpha signaling protected Wistar rats from diet-caused weight problems and insulin resistance. Endocrinology. 149, 2943–2951 (2008).

  • 44.

    Maillet, I. et al. Allergic lung inflammation is mediated by soluble tumor necrosis factor (TNF) and attenuated by dominant-negative TNF biologics. Am J Respir Cell Mol Biol. 45, 731–739 (2011).

  • 45.

    Ganster, R. W., Taylor, B. S., Shao, L. & Geller, D. A. Complex regulating human inducible nitric oxide supplement synthase gene transcription byStat 1 and NF-kappa B. Proc. Natl. Acad. Sci. USA 98, 8638–8643 (2001).

  • 46.

    Tsuchiya, K. et al. Chronic blockade of nitric oxide supplement synthesis reduces adiposity and improves insulin resistance in high-fat-caused obese rodents. Endocrinology. 148, 4548–4556 (2007).

  • 47.

    Szabó, C. et al. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase interact with peroxynitrite and safeguard against peroxynitrite-caused oxidative damage. J. Biol. Chem. 272, 9030–9036 (1997).

  • 48.

    Ott, C. et al. Role of advanced glycation finish products in cellular signaling. Redox. Biol. 2, 411–429 (2014).

  • 49.

    Nagai, R., Murray, D. B., Metz, T. O. & Baynes, J. W. Chelation: a simple mechanism of action old inhibitors, AGE breakers, along with other inhibitors of diabetes complications. Diabetes. 61(3), 549–559 (2012).

  • 50.

    Liu, K., Zhou, R., Wang, B. & Mi, M. T. Aftereffect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 99, 1510–1519 (2014).

  • 51.

    Hong, H. J. et al. Results of resveratrol around the insulin signaling path of obese rodents. J. Vet. Sci. 15, 179–85 (2014).

  • 52.

    Sideleva, O., Black, K. & Dixon, A. E. Results of weight problems and weight reduction on airway physiology and inflammation in bronchial asthma. Pulm. Pharmacol. Ther. 26, 455–458 (2013).

  • 53.

    Chang, C. C., Lin, K. Y., Peng, K. Y., Day, Y. J. & Hung, L. M. Resveratrol exerts anti-weight problems effects in high-fat diet obese rodents and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr. J. 63, 169–178 (2016).

  • 54.

    Rieder, S. A., Nagarkatti, P. & Nagarkatti, M. Multiple anti-inflammatory pathways triggered by resveratrol result in amelioration of staphylococcal enterotoxin B-caused lung injuries. Br. J. Pharmacol. 167, 1244–1258 (2012).

  • 55.

    Burks, D. J. et al. IRS-2 pathways integrate female reproduction and homeostasis. Nature 407, 377–382 (2000).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *